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1.1. Installation




1.1.1. Introducation

This document introduces how to install PaddleClas and its requirements.




1.1.2. Install PaddlePaddle

Python 3.5, CUDA 9.0, CUDNN7.0 nccl2.1.2 and later version are required at first, For now, PaddleClas only support training on the GPU device. Please follow the instructions in the Installation [http://www.paddlepaddle.org.cn/install/quick] if the PaddlePaddle on the device is lower than v1.7

Install PaddlePaddle

pip install paddlepaddle-gpu --upgrade





or compile from source code, please refer to Installation [http://www.paddlepaddle.org.cn/install/quick].

Verify Installation

import paddle.fluid as fluid
fluid.install_check.run_check()





Check PaddlePaddle version：

python -c "import paddle; print(paddle.__version__)"





Note:


	Make sure the compiled version is later than v1.7


	Indicate WITH_DISTRIBUTE=ON when compiling, Please refer to Instruction [https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#id3] for more details.







1.1.3. Install PaddleClas

**Clone PaddleClas: **

cd path_to_clone_PaddleClas
git clone https://github.com/PaddlePaddle/PaddleClas.git





Install requirements

pip install --upgrade -r requirements.txt











          

      

      

    

  

    
      
          
            
  
1.2. Trial in 30mins

Based on the flowers102 dataset, it takes only 30 mins to experience PaddleClas, include training varieties of backbone and pretrained model, SSLD distillation, and multiple data augmentation, Please refer to Installation to install at first.


1.2.1. Preparation


	enter insatallation dir




cd path_to_PaddleClas






	enter dataset/flowers102, download and decompress flowers102 dataset.




cd dataset/flowers102
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat
tar -xf 102flowers.tgz






	create train/val/test label files




python generate_flowers102_list.py jpg train > train_list.txt
python generate_flowers102_list.py jpg valid > val_list.txt
python generate_flowers102_list.py jpg test > extra_list.txt
cat train_list.txt extra_list.txt > train_extra_list.txt





Note: In order to offer more data to SSLD training task, train_list.txt and extra_list.txt will merge into train_extra_list.txft


	return PaddleClas dir




cd ../../








1.2.2. Environment


1.2.2.1. Set PYTHONPATH

export PYTHONPATH=./:$PYTHONPATH








1.2.2.2. Download pretrained model

python tools/download.py -a ResNet50_vd -p ./pretrained -d True
python tools/download.py -a ResNet50_vd_ssld -p ./pretrained -d True
python tools/download.py -a MobileNetV3_large_x1_0 -p ./pretrained -d True





Paramters：


	architecture(shortname: a): model name.


	path(shortname: p) download path.


	decompress(shortname: d) whether to decompress.





	All experiments are running on the NVIDIA® Tesla® V100 sigle card.









1.2.3. Training


1.2.3.1. Train from scratch


	Train ResNet50_vd




export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd.yaml





The validation Top1 Acc curve is showmn below.

[image: ../_images/r50_vd_acc.png]




1.2.3.2. Finetune - ResNet50_vd pretrained model (Acc 79.12%)


	finetune ResNet50_vd_ model pretrained on the 1000-class Imagenet dataset




export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_finetune.yaml





The validation Top1 Acc curve is shown below

[image: ../_images/r50_vd_pretrained_acc.png]

Compare with training from scratch, it improve by 65% to 94.02%




1.2.3.3. SSLD finetune - ResNet50_vd_ssld pretrained model (Acc 82.39%)

Note: when finetuning model, which has been trained by SSLD, please use smaller learning rate in the middle of net.

ARCHITECTURE:
    name: 'ResNet50_vd'
    params:
        lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3]
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"





Tringing script

export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml





Compare with finetune on the 79.12% pretrained model, it improve by 0.9% to 95%.




1.2.3.4. More architecture - MobileNetV3

Training script

export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml





Compare with ResNet50_vd pretrained model, it decrease by 5% to 90%. Different architecture generates different performance, actually it is a task-oriented decision to apply the best performance model, should consider the inference time, storage, heterogeneous device, etc.




1.2.3.5. RandomErasing

Data augmentation works when training data is small.

Training script

export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml





It improves by 1.27% to 96.27%


	Save ResNet50_vd pretrained model to experience next chapter.




cp -r output/ResNet50_vd/19/  ./pretrained/flowers102_R50_vd_final/








1.2.3.6. Distillation


	Use extra_list.txt as unlabeled data, Note:


	Samples in the extra_list.txt and val_list.txt don’t have intersection


	Because of in the source code, label information is unused, This is still unlabeled distillation


	Teacher model use the pretrained_model trained on the flowers102 dataset, and student model use the MobileNetV3_large_x1_0 pretrained model(Acc 75.32%) trained on the ImageNet1K dataset








total_images: 7169
ARCHITECTURE:
    name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
pretrained_model:
    - "./pretrained/flowers102_R50_vd_final/ppcls"
    - "./pretrained/MobileNetV3_large_x1_0_pretrained/”
TRAIN:
    file_list: "./dataset/flowers102/train_extra_list.txt"





Final training script

export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml





It significantly imporve by 6.47% to 96.47% with more unlabeled data and teacher model.




1.2.3.7. All accuracy




	Configuration
	Top1 Acc





	ResNet50_vd.yaml
	0.2735



	MobileNetV3_large_x1_0_finetune.yaml
	0.9000



	ResNet50_vd_finetune.yaml
	0.9402



	ResNet50_vd_ssld_finetune.yaml
	0.9500



	ResNet50_vd_ssld_random_erasing_finetune.yaml
	0.9627



	R50_vd_distill_MV3_large_x1_0.yaml
	0.9647




The whole accuracy curves are shown below

[image: ../_images/all_acc.png]


	NOTE: As flowers102 is a small dataset, validatation accuracy maybe float 1%.


	Please refer to Getting_started for more details












          

      

      

    

  

    
      
          
            
  
1.3. Data




1.3.1. Introducation

This document introduces the preparation of ImageNet1k and flowers102




1.3.2. Dataset




	Dataset
	train dataset size
	valid dataset size
	category





	flowers102
	1k
	6k
	102



	ImageNet1k
	1.2M
	50k
	1000





	Data format




Please follow the steps mentioned below to organize data, include train_list.txt and val_list.txt

# delimiter: "space"

ILSVRC2012_val_00000001.JPEG 65
...






1.3.2.1. ImageNet1k

After downloading data, please organize the data dir as below

PaddleClas/dataset/imagenet/
|_ train/
|  |_ n01440764
|  |  |_ n01440764_10026.JPEG
|  |  |_ ...
|  |_ ...
|  |
|  |_ n15075141
|     |_ ...
|     |_ n15075141_9993.JPEG
|_ val/
|  |_ ILSVRC2012_val_00000001.JPEG
|  |_ ...
|  |_ ILSVRC2012_val_00050000.JPEG
|_ train_list.txt
|_ val_list.txt








1.3.2.2. Flowers102 Dataset

Download Data [https://www.robots.ox.ac.uk/~vgg/data/flowers/102/] then decompress:

jpg/
setid.mat
imagelabels.mat





Please put all the files under PaddleClas/dataset/flowers102

generate generate_flowers102_list.py and train_list.txt和val_list.txt

python generate_flowers102_list.py jpg train > train_list.txt
python generate_flowers102_list.py jpg valid > val_list.txt





Please organize data dir as below

PaddleClas/dataset/flowers102/
|_ jpg/
|  |_ image_03601.jpg
|  |_ ...
|  |_ image_02355.jpg
|_ train_list.txt
|_ val_list.txt













          

      

      

    

  

    
      
          
            
  
1.4. Getting Started



Please refer to Installation to setup environment at first, and prepare ImageNet1K data by following the instruction mentioned in the data


1.4.1. Setup

Setup PYTHONPATH：

export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH








1.4.2. Training and validating

PaddleClas support tools/train.py and tools/eval.py to start training and validating.


1.4.2.1. Training

# PaddleClas use paddle.distributed.launch to start multi-cards and multiprocess training.
# Set FLAGS_selected_gpus to indicate GPU cards

python -m paddle.distributed.launch \
    --selected_gpus="0,1,2,3" \
    tools/train.py \
        -c ./configs/ResNet/ResNet50_vd.yaml






	log:




epoch:0    train    step:13    loss:7.9561    top1:0.0156    top5:0.1094    lr:0.100000    elapse:0.193





add -o params to update configuration

python -m paddle.distributed.launch \
    --selected_gpus="0,1,2,3" \
    tools/train.py \
        -c ./configs/ResNet/ResNet50_vd.yaml \
        -o use_mix=1 \
    --vdl_dir=./scalar/






	log:




epoch:0    train    step:522    loss:1.6330    lr:0.100000    elapse:0.210





or modify configuration directly to config fileds, please refer to config for more details.

use visuldl to visulize training loss in the real time

visualdl --logdir ./scalar --host <host_IP> --port <port_num>








1.4.2.2. finetune


	please refer to Trial for more details.







1.4.2.3. validation

python tools/eval.py \
    -c ./configs/eval.yaml \
    -o ARCHITECTURE.name="ResNet50_vd" \
    -o pretrained_model=path_to_pretrained_models

modify `configs/eval.yaml filed: `ARCHITECTURE.name` and filed: `pretrained_model` to config valid model or add -o params to update config directly.


**NOTE: ** when loading the pretrained model, should ignore the suffix ```.pdparams```

## Predict

PaddlePaddle supprot three predict interfaces
Use predicator interface to predict
First, export inference model

```bash
python tools/export_model.py \
    --model=model_name \
    --pretrained_model=pretrained_model_dir \
    --output_path=save_inference_dir





Second, start predicator enginee：

python tools/infer/predict.py \
    -m model_path \
    -p params_path \
    -i image path \
    --use_gpu=1 \
    --use_tensorrt=True





please refer to inference for more details.









          

      

      

    

  

    
      
          
            
  #Configuration




1.5. Introduction

This document introduces the configuration(filed in config/*.yaml) of PaddleClas.


1.5.1. Basic




	name
	detail
	default value
	optional value





	mode
	mode
	"train"
	["train"," valid"]



	architecture
	model name
	"ResNet50_vd"
	one of 23 architectures



	pretrained_model
	pretrained model path
	""
	Str



	model_save_dir
	model stored path
	""
	Str



	classes_num
	class number
	1000
	int



	total_images
	total images
	1281167
	int



	save_interval
	save interval
	1
	int



	validate
	whether to validate when training
	TRUE
	bool



	valid_interval
	valid interval
	1
	int



	epochs
	epoch
	
	int



	topk
	K value
	5
	int



	image_shape
	image size
	[3，224，224]
	list, shape: (3,)



	use_mix
	whether to use mixup
	False
	['True', 'False']



	ls_epsilon
	label_smoothing epsilon value
	0
	float







1.5.2. Optimizer & Learning rate

learning rate




	name
	detail
	default value
	Optional value





	function
	decay type
	"Linear"
	["Linear", "Cosine",  "Piecewise", "CosineWarmup"]
  
    
    2. models
    

    
 
  

    
      
          
            
  
2. models



	2.1. Model Library Overview

	2.2. Tricks for Training

	2.3. ResNet and ResNet_vd series

	2.4. Mobile and Embedded Vision Applications Network series

	2.5. SEResNeXt and Res2Net series

	2.6. Inception series

	2.7. HRNet series

	2.8. DPN and DenseNet series

	2.9. EfficientNet and ResNeXt101_wsl series

	2.10. Other networks
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2.1. Model Library Overview


2.1.1. Overview

Based on the ImageNet1k classification dataset, the 23 classification network structures supported by PaddleClas and the corresponding 117 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.




2.1.2. Evaluation environment


	CPU evaluation environment is based on Snapdragon 855 (SD855).


	The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows.




#!/usr/bin/env bash

export PYTHONPATH=$PWD:$PYTHONPATH

python tools/infer/predict.py \
    --model_file='pretrained/infer/model' \
    --params_file='pretrained/infer/params' \
    --enable_benchmark=True \
    --model_name=ResNet50_vd \
    --use_tensorrt=True \
    --use_fp16=False \
    --batch_size=1





[image: ../_images/t4.fp32.bs4.main_fps_top1.png]

[image: ../_images/v100.fp32.bs1.main_fps_top1_s.jpg]

[image: ../_images/mobile_arm_top1.png]


If you think this document is helpful to you, welcome to give a star to our project:https://github.com/PaddlePaddle/PaddleClas







2.1.3. Pretrained model list and download address


	ResNet and ResNet_vd series


	ResNet series[1](paper link [http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html])


	ResNet18 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar]


	ResNet34 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar]


	ResNet50 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar]


	ResNet101 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar]


	ResNet152 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar]






	ResNet_vc、ResNet_vd series[2](paper link [https://arxiv.org/abs/1812.01187])


	ResNet50_vc [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar]


	ResNet18_vd [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar]


	ResNet34_vd [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar]


	ResNet50_vd [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar]


	ResNet50_vd_v2 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar]


	ResNet101_vd [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar]


	ResNet152_vd [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar]


	ResNet200_vd [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar]


	ResNet50_vd_ssld [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar]


	ResNet50_vd_ssld_v2 [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar]


	Fix_ResNet50_vd_ssld_v2 [https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNet50_vd_ssld_v2_pretrained.tar]


	ResNet101_vd_ssld [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar]










	Mobile and Embedded Vision Applications Network series


	MobileNetV3 series[3](paper link [https://arxiv.org/abs/1905.02244])


	MobileNetV3_large_x0_35 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar]


	MobileNetV3_large_x0_5 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar]


	MobileNetV3_large_x0_75 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar]


	MobileNetV3_large_x1_0 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar]


	MobileNetV3_large_x1_25 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar]


	MobileNetV3_small_x0_35 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar]


	MobileNetV3_small_x0_5 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar]


	MobileNetV3_small_x0_75 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar]


	MobileNetV3_small_x1_0 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar]


	MobileNetV3_small_x1_25 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar]


	MobileNetV3_large_x1_0_ssld [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar]


	MobileNetV3_large_x1_0_ssld_int8 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar]


	MobileNetV3_small_x1_0_ssld [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar]






	MobileNetV2 series[4](paper link [https://arxiv.org/abs/1801.04381])


	MobileNetV2_x0_25 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar]


	MobileNetV2_x0_5 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar]


	MobileNetV2_x0_75 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar]


	MobileNetV2 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar]


	MobileNetV2_x1_5 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar]


	MobileNetV2_x2_0 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar]


	MobileNetV2_ssld [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar]






	MobileNetV1 series[5](paper link [https://arxiv.org/abs/1704.04861])


	MobileNetV1_x0_25 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar]


	MobileNetV1_x0_5 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar]


	MobileNetV1_x0_75 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar]


	MobileNetV1 [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar]


	MobileNetV1_ssld [https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar]






	ShuffleNetV2 series[6](paper link [https://arxiv.org/abs/1807.11164])


	ShuffleNetV2_x0_25 [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar]


	ShuffleNetV2_x0_33 [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar]


	ShuffleNetV2_x0_5 [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar]


	ShuffleNetV2 [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar]


	ShuffleNetV2_x1_5 [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar]


	ShuffleNetV2_x2_0 [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar]


	ShuffleNetV2_swish [https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar]










	SEResNeXt and Res2Net series


	ResNeXt series[7](paper link [https://arxiv.org/abs/1611.05431])


	ResNeXt50_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar]


	ResNeXt50_64x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar]


	ResNeXt101_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar]


	ResNeXt101_64x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar]


	ResNeXt152_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar]


	ResNeXt152_64x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar]






	ResNeXt_vd series


	ResNeXt50_vd_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar]


	ResNeXt50_vd_64x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar]


	ResNeXt101_vd_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar]


	ResNeXt101_vd_64x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar]


	ResNeXt152_vd_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar]


	ResNeXt152_vd_64x4d [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar]






	SE_ResNet_vd series[8](paper link [https://arxiv.org/abs/1709.01507])


	SE_ResNet18_vd [https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar]


	SE_ResNet34_vd [https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar]


	SE_ResNet50_vd [https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar]






	SE_ResNeXt series


	SE_ResNeXt50_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar]


	SE_ResNeXt101_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar]






	SE_ResNeXt_vd series


	SE_ResNeXt50_vd_32x4d [https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar]


	SENet154_vd [https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar]






	Res2Net series[9](paper link [https://arxiv.org/abs/1904.01169])


	Res2Net50_26w_4s [https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar]


	Res2Net50_vd_26w_4s [https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar]


	Res2Net50_14w_8s [https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar]


	Res2Net101_vd_26w_4s [https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar]


	Res2Net200_vd_26w_4s [https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar]










	Inception series


	GoogLeNet series[10](paper link [https://arxiv.org/pdf/1409.4842.pdf])


	GoogLeNet [https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar]






	Inception series[11](paper link [https://arxiv.org/abs/1602.07261])


	InceptionV4 [https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar]






	Xception series[12](paper link [http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html])


	Xception41 [https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar]


	Xception41_deeplab [https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar]


	Xception65 [https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar]


	Xception65_deeplab [https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar]


	Xception71 [https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar]










	HRNet series


	HRNet series[13](paper link [https://arxiv.org/abs/1908.07919])


	HRNet_W18_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar]


	HRNet_W30_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar]


	HRNet_W32_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar]


	HRNet_W40_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar]


	HRNet_W44_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar]


	HRNet_W48_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar]


	HRNet_W64_C [https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar]










	DPN and DenseNet series


	DPN series[14](paper link [https://arxiv.org/abs/1707.01629])


	DPN68 [https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar]


	DPN92 [https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar]


	DPN98 [https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar]


	DPN107 [https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar]


	DPN131 [https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar]






	DenseNet series[15](paper link [https://arxiv.org/abs/1608.06993])


	DenseNet121 [https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar]


	DenseNet161 [https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar]


	DenseNet169 [https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar]


	DenseNet201 [https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar]


	DenseNet264 [https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar]










	EfficientNet and ResNeXt101_wsl series


	EfficientNet series[16](paper link [https://arxiv.org/abs/1905.11946])


	EfficientNetB0_small [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar]


	EfficientNetB0 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar]


	EfficientNetB1 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar]


	EfficientNetB2 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar]


	EfficientNetB3 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar]


	EfficientNetB4 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar]


	EfficientNetB5 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar]


	EfficientNetB6 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar]


	EfficientNetB7 [https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar]






	ResNeXt101_wsl series[17](paper link [https://arxiv.org/abs/1805.00932])


	ResNeXt101_32x8d_wsl [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar]


	ResNeXt101_32x16d_wsl [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar]


	ResNeXt101_32x32d_wsl [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar]


	ResNeXt101_32x48d_wsl [https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar]


	Fix_ResNeXt101_32x48d_wsl [https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar]










	Other models


	AlexNet series[18](paper link [https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf])


	AlexNet [https://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar]






	SqueezeNet series[19](paper link [https://arxiv.org/abs/1602.07360])


	SqueezeNet1_0 [https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar]


	SqueezeNet1_1 [https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar]






	VGG series[20](paper link [https://arxiv.org/abs/1409.1556])


	VGG11 [https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar]


	VGG13 [https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar]


	VGG16 [https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar]


	VGG19 [https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar]






	DarkNet series[21](paper link [https://arxiv.org/abs/1506.02640])


	DarkNet53 [https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar]






	ACNet series[22](paper link [https://arxiv.org/abs/1908.03930])


	ResNet50_ACNet_deploy [https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_ACNet_deploy_pretrained.tar]












Note: The pretrained models of EfficientNetB1-B7 in the above models are transferred from pytorch version of EfficientNet [https://github.com/lukemelas/EfficientNet-PyTorch], and the ResNeXt101_wsl series of pretrained models are transferred from Official repo [https://github.com/facebookresearch/WSL-Images], the remaining pretrained models are obtained by training with the PaddlePaddle framework, and the corresponding training hyperparameters are given in configs.
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2.2. Tricks for Training


2.2.1. Choice of Optimizers:

Since the development of deep learning, there have been many researchers working on the optimizer. The purpose of the optimizer is to make the loss function as small as possible, so as to find suitable parameters to complete a certain task. At present, the main optimizers used in model training are SGD, RMSProp, Adam, AdaDelt and so on. The SGD optimizers with momentum is widely used in academia and industry, so most of models we release are trained by SGD optimizer with momentum. But the SGD optimizer with momentum has two disadvantages, one is that the convergence speed is slow, the other is that the initial learning rate is difficult to set, however, if the initial learning rate is set properly and the models are trained in sufficient iterations, the models trained by SGD with momentum can reach higher accuracy compared with the models trained by other optimizers. Some other optimizers with adaptive learning rate such as Adam, RMSProp and so on tent to converge faster, but the final convergence accuracy will be slightly worse. If you want to train a model in faster convergence speed, we recommend you use the optimizers with adaptive learning rate, but if you want to train a model with higher accuracy, we recommend you to use SGD optimizer with momentum.




2.2.2. Choice of Learning Rate and Learning Rate Declining Strategy:

The choice of learning rate is related to the optimizer, data set and tasks. Here we mainly introduce the learning rate of training ImageNet-1K with momentum + SGD as the optimizer and the choice of learning rate decline.


2.2.2.1. Concept of Learning Rate：

the learning rate is the hyperparameter to control the learning speed, the lower the learning rate, the slower the change of the loss value, though using a low learning rate can ensure that you will not miss any local minimum, but it also means that the convergence speed is slow, especially when the gradient is trapped in a gradient plateau area.




2.2.2.2. Learning Rate Decline Strategy：

During training, if we always use the same learning rate, we cannot get the model with highest accuracy, so the learning rate should be adjust during training. In the early stage of training, the weights are in a random initialization state and the gradients are tended to descent, so we can set a relatively large learning rate for faster convergence. In the late stage of training, the weights are close to the optimal values, the optimal value cannot be reached by a relatively large learning rate, so a relatively smaller learning rate should be used. During training, many researchers use the piecewise_decay learning rate reduction strategy, which is a stepwise decline learning rate. For example, in the training of ResNet50, the initial learning rate we set is 0.1, and the learning rate drops to 1/10 every 30 epoches, the total epoches for training is 120. Besides the piecewise_decay, many researchers also proposed other ways to decrease the learning rate, such as polynomial_decay, exponential_decay and cosine_decay and so on, among them, cosine_decay has become the preferred learning rate reduction method for improving model accuracy beacause there is no need to adjust hyperparameters and the robustness is relatively high. The learning rate curves of cosine_decay and piecewise_decay are shown in the following figures, it is easy to observe that during the entire training process, cosine_decay keeps a relatively large learning rate, so its convergence is slower, but the final convergence accuracy is better than the one using piecewise_decay.

[image: ../_images/lr_decay.jpeg]

In addition, we can also see from the figures that the number of epoches with a small learning rate in cosine_decay is fewer, which will affect the final accuracy, so in order to make cosine_decay play a better effect, it is recommended to use cosine_decay in large epoched, such as 200 epoches.




2.2.2.3. Warmup Strategy

If a large batch_size is adopted to train nerual network, we recommend you to adopt warmup strategy. as the name suggests, the warmup strategy is to let model learning first warm up, we do not directly use the initial learning rate at the begining of training, instead, we use a gradually increasing learning rate to train the model, when the increasing learning rate reaches the initial learning rate, the learning rate reduction method mentioned in the learning rate reduction strategy is then used to decay the learning rate. Experiments show that when the batch size is large, warmup strategy can improve the accuracy. Some model training with large batch_size such as MobileNetV3 training, we set the epoch in warmup to 5 by default, that is, first in 5 epoches, the learning rate increases from 0 to initial learning rate, then learning rate decay begins.






2.2.3. Choice of Batch_size

Batch_size is an important hyperparameter in training neural networks, batch_size determines how much data is sent to the neural network to for training at a time. In the paper [1], the author found in experiments that when batch_size is linearly related to the learning rate, the convergence accuracy is hardly affected. When training ImageNet data, an initial learning rate of 0.1 are commonly chosen for training, and batch_size is 256, so according to the actual model size and memory, you can set the learning rate to 0.1*k, batch_size to 256*k.




2.2.4. Choice of Weight_decay

Overfitting is a common term in machine learning. A simple understanding is that the model performs well on the training data, but it performs poorly on the test data. In the convolutional neural network, there also exists the problem of overfitting. To avoid overfitting, many regular ways have been proposed. Among them, weight_decay is one of the widely used ways to avoid overfitting. After the final loss function, L2 regularization(weight_decay) is added to the loss function, with the help of L2 regularization, the weight of the network tend to choose a smaller value, and finally the parameters in the entire network tends to 0, and the generalization performance of the model is improved accordingly. In different kinds of Deep learning frame, the meaning of L2_decay is the coefficient of L2 regularization, on paddle, the name of this value is L2_decay, so in the following the value is called L2_decay. the larger the coefficient, the more the model tends to be underfitting. In the task of training ImageNet, this parameter is set to 1e-4 in most network. In some small networks such as MobileNet networks, in order to avoid network underfitting, the value is set to 1e-5 ~ 4e-5. Of course, the setting of this value is also related to the specific data set, When the data set is large, the network itself tends to be under-fitted, and the value can be appropriately reduced. When the data set is small, the network tends to overfit itself, so the value can be increased appropriately. The following table shows the accuracy of MobileNetV1_x0_25 using different l2_decay on ImageNet-1k. Since MobileNetV1_x0_25 is a relatively small network, the large l2_decay will make the network tend to be underfitting, so in this network, 3e-5 are better choices compared with 1e-4.




	Model
	L2_decay
	Train acc1/acc5
	Test acc1/acc5





	MobileNetV1_x0_25
	1e-4
	43.79%/67.61%
	50.41%/74.70%



	MobileNetV1_x0_25
	3e-5
	47.38%/70.83%
	51.45%/75.45%




In addition, the setting of L2_decay is also related to whether other regularization is used during training. If the data argument during the training is more complicated, which means that the training becomes more difficult, L2_decay can be appropriately reduced. The following table shows that the precision of ResNet50 using a different l2_decay on ImageNet-1K. It is easy to observe that after the training becomes difficult, using a smaller l2_decay helps to improve the accuracy of the model.




	Model
	L2_decay
	Train acc1/acc5
	Test acc1/acc5





	ResNet50
	1e-4
	75.13%/90.42%
	77.65%/93.79%



	ResNet50
	7e-5
	75.56%/90.55%
	78.04%/93.74%




In summary, l2_decay can be adjusted according to specific tasks and models. Usually simple tasks or larger models are recommended to use Larger l2_decay, complex tasks or smaller models are recommended to use smaller l2_decay.




2.2.5. Choice of Label_smoothing

Label_smoothing is a regularization method in deep learning. Its full name is Label Smoothing Regularization (LSR), that is, label smoothing regularization. In the traditional classification task, when calculating the loss function, the real one hot label and the output of the neural network are calculated in cross-entropy formula, the label smoothing aims to make the real one hot label become smooth label, which makes the neural network no longer learn from the hard labels, but the soft labels with a probability value, where the probability of the position corresponding to the category is the largest and the probability of other positions are very small value, specific calculation method can be seen in the paper[2]. In label-smoothing, there is an epsilon parameter describing the degree of softening the label. The larger epsilon, the smaller the probability and smoother the label, on the contrary, the label tends to be hard label. during training on ImageNet-1K, the parameter is usually set to 0.1. In the experiments of training ResNet50, when using label_smoothing, the accuracy is higher than the one without label_smoothing, the following table shows the performance of ResNet50_vd with label smoothing and without label smoothing.




	Model
	Use_label_smoothing
	Test acc1





	ResNet50_vd
	0
	77.9%



	ResNet50_vd
	1
	78.4%




But, because label smoothing can be regarded as a regular way, on relatively small models, the accuracy improvement is not obvious or even decreases, the following table shows the accuracy performance of ResNet18 with label smoothing and without label smoothing on ImageNet-1K, it can be clearly seen that after using label smoothing, the accuracy of ResNet has decreased.




	Model
	Use_label_smoohing
	Train acc1/acc5
	Test acc1/acc5





	ResNet18
	0
	69.81%/87.70%
	70.98%/89.92%



	ResNet18
	1
	68.00%/86.56%
	70.81%/89.89%




In summary, the use of label_smoohing for larger models can effectively improve the accuracy of the model, and the use of label_smoohing for smaller models may reduce the accuracy of the model, so before deciding whether to use label_smoohing, you need to evaluate the size of the model and the difficulty of the task.




2.2.6. Change the Crop Area and Stretch Transformation Degree of the Images for Small Models

In the standard preprocessing of ImageNet-1k data, two values of scale and ratio are defined in the random_crop function. These two values respectively determine the size of the image crop and the degree of stretching of the image. The default value of scale is 0.08-1(lower_scale-upper_scale), the default value range of ratio is 3/4-4/3(lower_ratio-upper_ratio). In small network training, such data argument will make the network underfitting, resulting in a decrease in accuracy. In order to improve the accuracy of the network, you can make the data argument weaker, that is, increase the crop area of the images or weaken the degree of stretching and transformation of the images, we can achieve weaker image transformation by increasing the value of lower_scale or narrowing the gap between lower_ratio and upper_scale. The following table lists the accuracy of training MobileNetV2_x0_25 with different lower_scale. It can be seen that the training accuracy and validation accuracy are improved after increasing the crop area of the images




	Model
	Scale Range
	Train_acc1/acc5
	Test_acc1/acc5





	MobileNetV2_x0_25
	[0.08,1]
	50.36%/72.98%
	52.35%/75.65%



	MobileNetV2_x0_25
	[0.2,1]
	54.39%/77.08%
	53.18%/76.14%







2.2.7. Use Data Augmentation to Improve Accuracy

In general, the size of the data set is critical to the performances, but the annotation of images are often more expensive, so the number of annotated images are often scarce. In this case, the data argument is particularly important. In the standard data augmentation for training on ImageNet-1k, two data augmentation methods which are random_crop and random_flip are mainly used. However, in recent years, more and more data augmentation methods have been proposed, such as cutout, mixup, cutmix, AutoAugment, etc. Experiments show that these data augmentation methods can effectively improve the accuracy of the model. The following table lists the performance of ResNet50 in 8 different data augmentation methods. It can be seen that compared to the baseline, all data augmentation methods can be useful for the accuracy of ResNet50, among them cutmix is currently the most effective data argument. More data argument can be seen hereData Argument [https://paddleclas.readthedocs.io/zh_CN/latest/advanced_tutorials/image_augmentation/ImageAugment.html].




	Model
	Data Argument
	Test top-1





	ResNet50
	Baseline
	77.31%



	ResNet50
	Auto-Augment
	77.95%



	ResNet50
	Mixup
	78.28%



	ResNet50
	Cutmix
	78.39%



	ResNet50
	Cutout
	78.01%



	ResNet50
	Gridmask
	77.85%



	ResNet50
	Random-Augment
	77.70%



	ResNet50
	Random-Erasing
	77.91%



	ResNet50
	Hide-and-Seek
	77.43%







2.2.8. Determine the Tuning Strategy by Train_acc and Test_acc

In the process of training the network, the training set accuracy rate and validation set accuracy rate of each epoch are usually printed. Generally speaking, the accuracy of the training set is slightly higher than the accuracy of the validation set or the same are good state in training, but if you find that the accuracy of training set is much higher than the one of validation set, it means that overfitting happens in your task, which need more regularization, such as increase the value of L2_decay, using more data argument or label smoothing and so on. If you find that the accuracy of training set is lower than the one of validation set, it means that underfitting happens in your task, which recommend you to decrease the value of L2_decay, using fewer data argument, increase the area of the crop area of the images, weaken the stretching transformation of the images, remove label_smoothing, etc.




2.2.9. Improve the Accuracy of Your Own Data Set with Existing Pre-trained Models

In the field of computer vision, it has become common to load pre-trained models to train one’s own tasks. Compared with starting training from random initialization, loading pre-trained models can often improve the accuracy of specific tasks. In general, the pre-trained model widely used in the industry is obtained from the ImageNet-1k dataset. The fc layer weight of the pre-trained model is a matrix of k*1000, where k is The number of neurons before,  and the weights of the fc layer is not need to load because of the different tasks. In terms of learning rate, if your training data set is particularly small (such as less than 1,000), we recommend that you use a smaller initial learning rate, such as 0.001 (batch_size: 256, the same below), to avoid a large learning rate undermine pre-training weights, if your training data set is relatively large (greater than 100,000), we recommend that you try a larger initial learning rate, such as 0.01 or greater.


If you think this guide is helpful to you, welcome to star our repo:https://github.com/PaddlePaddle/PaddleClas
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2.3. ResNet and ResNet_vd series


2.3.1. Overview

The ResNet series model was proposed in 2015 and won the championship in the ILSVRC2015 competition with a top5 error rate of 3.57%. The network innovatively proposed the residual structure, and built the ResNet network by stacking multiple residual structures. Experiments show that using residual blocks can improve the convergence speed and accuracy effectively.

Joyce Xu of Stanford university calls ResNet one of three architectures that “really redefine the way we think about neural networks.” Due to the outstanding performance of ResNet, more and more scholars and engineers from academia and industry have improved its structure. The well-known ones include wide-resnet, resnet-vc, resnet-vd, Res2Net, etc. The number of parameters and FLOPs of resnet-vc and resnet-vd are almost the same as those of ResNet, so we hereby unified them into the ResNet series.

The models of the ResNet series released this time include 14 pre-trained models including ResNet50, ResNet50_vd, ResNet50_vd_ssld, and ResNet200_vd. At the training level, ResNet adopted the standard training process for training ImageNet, while the rest of the improved model adopted more training strategies, such as cosine decay for the decline of learning rate and the regular label smoothing method,mixup was added to the data preprocessing, and the total number of iterations increased from 120 epoches to 200 epoches.

Among them, ResNet50_vd_v2 and ResNet50_vd_ssld adopted knowledge distillation, which further improved the accuracy of the model while keeping the structure unchanged. Specifically, the teacher model of ResNet50_vd_v2 is ResNet152_vd (top1 accuracy 80.59%), the training set is imagenet-1k, the teacher model of ResNet50_vd_ssld is ResNeXt101_32x16d_wsl (top1 accuracy 84.2%), and the training set is the combination of 4 million data mined by imagenet-22k and ImageNet-1k . The specific methods of knowledge distillation are being continuously updated.

The FLOPS, parameters, and inference time on the T4 GPU of this series of models are shown in the figure below.
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As can be seen from the above curves, the higher the number of layers, the higher the accuracy, but the corresponding number of parameters, calculation and latency will increase. ResNet50_vd_ssld further improves the accuracy of top-1 of the ImageNet-1k validation set by using stronger teachers and more data, reaching 82.39%, refreshing the accuracy of ResNet50 series models.
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2.4. Mobile and Embedded Vision Applications Network series


2.4.1. Overview

MobileNetV1 is a network launched by Google in 2017 for use on mobile devices or embedded devices. The network replaces the depthwise separable convolution with the traditional convolution operation, that is, the combination of depthwise convolution and pointwise convolution. Compared with the traditional convolution operation, this combination can greatly save the number of parameters and computation. At the same time, MobileNetV1 can also be used for object detection, image segmentation and other visual tasks.

MobileNetV2 is a lightweight network proposed by Google following MobileNetV1. Compared with MobileNetV1, MobileNetV2 proposed Linear bottlenecks and Inverted residual block as a basic network structures, to constitute MobileNetV2 network architecture through stacking these basic module a lot. In the end, higher classification accuracy was achieved when FLOPS was only half of MobileNetV1.

The ShuffleNet series network is the lightweight network structure proposed by MEGVII. So far, there are two typical structures in this series network, namely, ShuffleNetV1 and ShuffleNetV2. A Channel Shuffle operation in ShuffleNet can exchange information between groups and perform end-to-end training. In the paper of ShuffleNetV2, the author proposes four criteria for designing lightweight networks, and designs the ShuffleNetV2 network according to the four criteria and the shortcomings of ShuffleNetV1.

MobileNetV3 is a new and lightweight network based on NAS proposed by Google in 2019. In order to further improve the effect, the activation functions of relu and sigmoid were replaced with hard_swish and hard_sigmoid activation functions, and some improved strategies were introduced to reduce the amount of network computing.
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Currently there are 32 pretrained models of the mobile series open source by PaddleClas, and their indicators are shown in the figure below. As you can see from the picture, newer lightweight models tend to perform better, and MobileNetV3 represents the latest lightweight neural network architecture. In MobileNetV3, the author used 1x1 convolution after global-avg-pooling in order to obtain higher accuracy,this operation significantly increases the number of parameters but has little impact on the amount of computation, so if the model is evaluated from a storage perspective of excellence, MobileNetV3 does not have much advantage, but because of its smaller computation, it has a faster inference speed. In addition, the SSLD distillation model in our model library performs excellently, refreshing the accuracy of the current lightweight model from various perspectives. Due to the complex structure and many branches of the MobileNetV3 model, which is not GPU friendly, the GPU inference speed is not as good as that of MobileNetV1.
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2.5. SEResNeXt and Res2Net series


2.5.1. Overview

ResNeXt, one of the typical variants of ResNet, was presented at the CVPR conference in 2017. Prior to this, the methods to improve the model accuracy mainly focused on deepening or widening the network, which increased the number of parameters and calculation, and slowed down the inference speed accordingly. The concept of cardinality was proposed in ResNeXt structure. The author found that increasing the number of channel groups was more effective than increasing the depth and width through experiments. It can improve the accuracy without increasing the parameter complexity and reduce the number of parameters at the same time, so it is a more successful variant of ResNet.

SENet is the winner of the 2017 ImageNet classification competition. It proposes a new SE structure that can be migrated to any other network. It controls the scale to enhance the important features between each channel, and weaken the unimportant features. So that the extracted features are more directional.

Res2Net is a brand-new improvement of ResNet proposed in 2019. The solution can be easily integrated with other excellent modules. Without increasing the amount of calculation, the performance on ImageNet, CIFAR-100 and other data sets exceeds ResNet. Res2Net, with its simple structure and superior performance, further explores the multi-scale representation capability of CNN at a more fine-grained level. Res2Net reveals a new dimension to improve model accuracy, called scale, which is an essential and more effective factor in addition to the existing dimensions of depth, width, and cardinality. The network also performs well in other visual tasks such as object detection and image segmentation.

The FLOPS, parameters, and inference time on the T4 GPU of this series of models are shown in the figure below.
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At present, there are a total of 24 pretrained models of the three categories open sourced by PaddleClas, and the indicators are shown in the figure. It can be seen from the diagram that under the same Flops and Params, the improved model tends to have higher accuracy, but the inference speed is often inferior to the ResNet series. On the other hand, Res2Net performed better. Compared with group operation in ResNeXt and SE structure operation in SEResNet, Res2Net tended to have better accuracy in the same Flops, Params and inference speed.
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2.6. Inception series


2.6.1. Overview

GoogLeNet is a new neural network structure designed by Google in 2014, which, together with VGG network, became the twin champions of the ImageNet challenge that year. GoogLeNet introduces the Inception structure for the first time, and stacks the Inception structure in the network so that the number of network layers reaches 22, which is also the mark of the convolutional network exceeding 20 layers for the first time. Since 1x1 convolution is used in the Inception structure to reduce the dimension of channel number, and Global pooling is used to replace the traditional method of processing features in multiple fc layers, the final GoogLeNet network has much less FLOPS and parameters than VGG network, which has become a beautiful scenery of neural network design at that time.

Xception is another improvement to InceptionV3 that Google proposed after Inception. In Xception, the author used the depthwise separable convolution to replace the traditional convolution operation, which greatly saved the network FLOPS and the number of parameters, but improved the accuracy. In DeeplabV3+, the author further improved the Xception and increased the number of Xception layers, and designed the network of Xception65 and Xception71.

InceptionV4 is a new neural network designed by Google in 2016, when residual structure were all the rage, but the authors believe that high performance can be achieved using only Inception structure. InceptionV4 uses more Inception structure to achieve even greater precision on Imagenet-1k.

The FLOPS, parameters, and inference time on the T4 GPU of this series of models are shown in the figure below.
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The figure above reflects the relationship between the accuracy of Xception series and InceptionV4 and other indicators. Among them, Xception_deeplab is consistent with the structure of the paper, and Xception is an improved model developed by PaddleClas, which improves the accuracy by about 0.6% when the inference speed is basically unchanged. Details of the improved model are being updated, so stay tuned.
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2.7. HRNet series


2.7.1. Overview

HRNet is a brand new neural network proposed by Microsoft research Asia in 2019. Different from the previous convolutional neural network, this network can still maintain high resolution in the deep layer of the network, so the heat map of the key points predicted is more accurate, and it is also more accurate in space. In addition, the network performs particularly well in other visual tasks sensitive to resolution, such as detection and segmentation.

The FLOPS, parameters, and inference time on the T4 GPU of this series of models are shown in the figure below.
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At present, there are 7 pretrained models of such models open-sourced by PaddleClas, and their indicators are shown in the figure. Among them, the reason why the accuracy of the HRNet_W48_C indicator is abnormal may be due to fluctuations in training.
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2.8. DPN and DenseNet series


2.8.1. Overview

DenseNet is a new network structure proposed in 2017 and was the best paper of CVPR. The network has designed a new cross-layer connected block called dense-block. Compared to the bottleneck in ResNet, dense-block has designed a more aggressive dense connection module, that is, connecting all the layers to each other, and each layer will accept all the layers in front of it as its additional input. DenseNet stacks all dense-blocks into a densely connected network. The dense connection makes DenseNet easier to backpropagate, making the network easier to train and converge.  The full name of DPN is Dual Path Networks, which is a network composed of DenseNet and ResNeXt, which proves that DenseNet can extract new features from the previous level, and ResNeXt essentially reuses the extracted features . The author further analyzes and finds that ResNeXt has high reuse rate for features, but low redundancy, while DenseNet can create new features, but with high redundancy. Combining the advantages of the two structures, the author designed the DPN network. In the end, the DPN network achieved better results than ResNeXt and DenseNet under the same FLOPS and parameters.

The FLOPS, parameters, and inference time on the T4 GPU of this series of models are shown in the figure below.
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The pretrained models of these two types of models (a total of 10) are open sourced in PaddleClas at present. The indicators are shown in the figure above. It is easy to observe that under the same FLOPS and parameters, DPN has higher accuracy than DenseNet. However,because DPN has more branches, its inference speed is slower than DenseNet. Since DenseNet264 has the deepest layers in all DenseNet networks, it has the largest parameters,DenseNet161 has the largest width, resulting the largest FLOPs and the highest accuracy in this series. From the perspective of inference speed, DenseNet161, which has a large FLOPs and high accuracy, has a faster speed than DenseNet264, so it has a greater advantage than DenseNet264.

For DPN series networks, the larger the model’s FLOPs and parameters, the higher the model’s accuracy. Among them, since the width of DPN107 is the largest, it has the largest number of parameters and FLOPs in this series of networks.
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2.9. EfficientNet and ResNeXt101_wsl series


2.9.1. Overview

EfficientNet is a lightweight NAS-based network released by Google in 2019. EfficientNetB7 refreshed the classification accuracy of ImageNet-1k at that time. In this paper, the author points out that the traditional methods to improve the performance of neural networks mainly start with the width of the network, the depth of the network, and the resolution of the input picture.
However, the author found that balancing these three dimensions is essential for improving accuracy and efficiency through experiments.
Therefore, the author summarized how to balance the three dimensions at the same time through a series of experiments.
At the same time, based on this scaling method, the author built a total of 7 networks B1-B7 in the EfficientNet series on the basis of EfficientNetB0, and with the same FLOPS and parameters, the accuracy reached state-of-the-ar